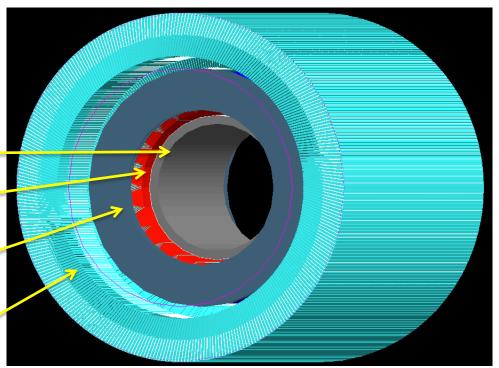


HCal Light Collection Efficiency Correction Simulation Study

Liang Xue
Georgia State University

Detector Configuration

- SPACAL + Inner HCal + Magnet + Outer HCal
- Inner HCal:
 - Scint tile / Stainless steel
 - R(in)=116 cm, R(out)=135 cm
 - Scint thickness: 0.7 cm, # Scint tiles:64x5
 - Tilted-angle: 29.4°
- 1D projective SPACAL
- sPHENIX field map
- 5 k, 30 GeV charge pion SPACAL


HCAL Reference Design

New sPHENIX software

Pure G4Hit, ideal towering

Outer Hcal:

- Scint tile / Fe
- R(in)=178 cm, R(out)=260.3 cm
- Scint thickness: 0.7 cm, # Scint tiles: 64x5

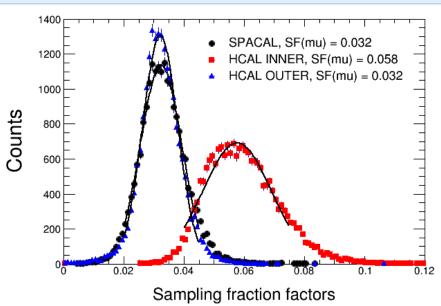
/direct/phenix+sim01/phnxreco/users/lxue/G4Sim_RefDesignLightYield/spacal_hcal

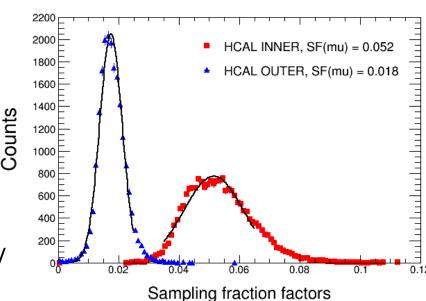
HCAL INNER

MAGNET

HCAL OUTER

Sampling Fraction Factors

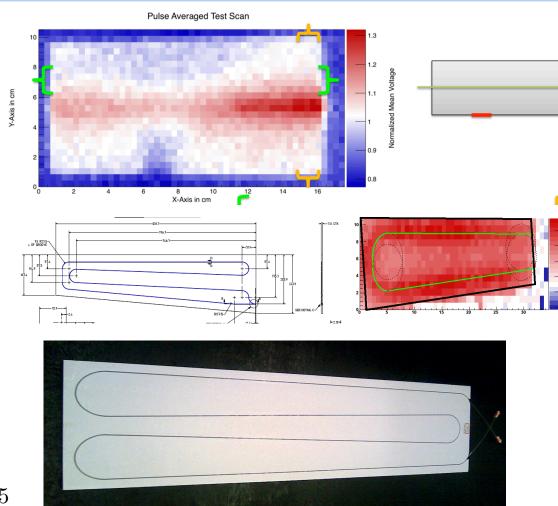

Before light correction, sampling fraction factor calculated from muons via:


$$SF(mu) = \frac{Escint(mu)}{Escint(mu) + Eabsorber(mu)}$$

After light correction, sampling fraction factor calculated from muons via:

$$SF(mu) = \frac{Escint(mu, light - corrected)}{Escint(mu) + Eabsorber(mu)}$$

/direct/phenix+sim01/phnxreco/users/lxue/ G4Sim_RefDesignLightYield/SF/mu/



Light Collection Efficiency

- Previous study assume a uniform light collection efficiency.
- Light collection efficiency is different for photons at different position of the scintillator tile.
- A linear light collection efficiency correction is applied by assuming:
 - HCAL INNER: $Eff(R_{out})=1.0$, $Eff(R_{in})=0.8$
 - HCAL OUTER: Eff(R_{out})=1.0, Eff(R_{in})=0.15

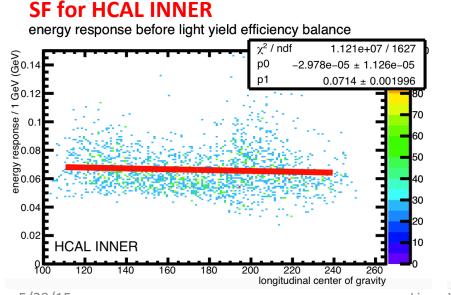
$$eff = \frac{1.0 - 0.15}{R_{out} - R_{in}} \times (r - R_{in}) + 0.15$$

https://indico.bnl.gov/getFile.py/access? contribId=3&resId=0&materialId=slides&confId=1175 E. Kistenev

Energy response, sampling factors before light correction

Counts

- A spike (channeling / punch through) at 0 for energy response in HCAL outer.
- Slight decrease trend for SF vs.
 longitudinal center of gravity (LCG) for HCAL inner.
- HCAL outer SF is dependent on LCG/ radius (decrease trend) as expected.


HCAL INNER HCAL OUTER

Before Light Eff Correction

energy response before light yield efficiency balance

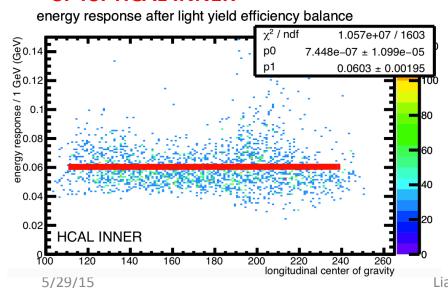
SPACAL

SF for HCAL OUTER

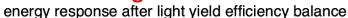
energy response before light yield efficiency balance

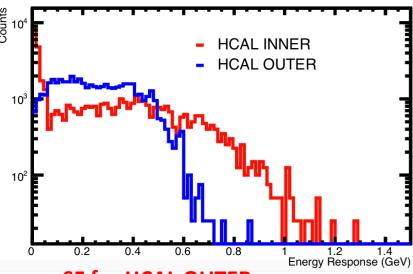
\[\begin{array}{c} \frac{0.1}{2} \\ \text{0.09} \\ \text{0.09} \\ \text{0.00} \\ \tex

5/29/15

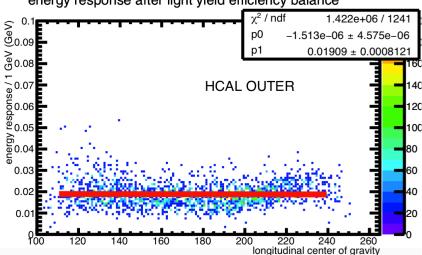

Liang Xue

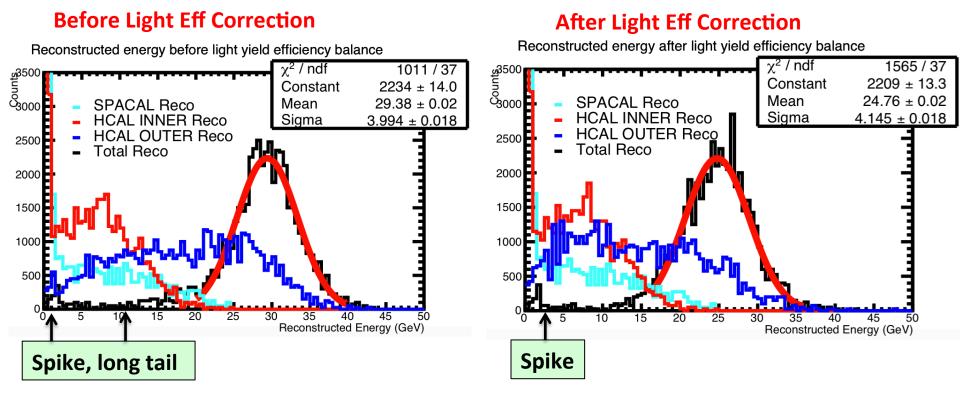
1.2 1.4 Energy Response (GeV)


Energy response, sampling factors after light correction

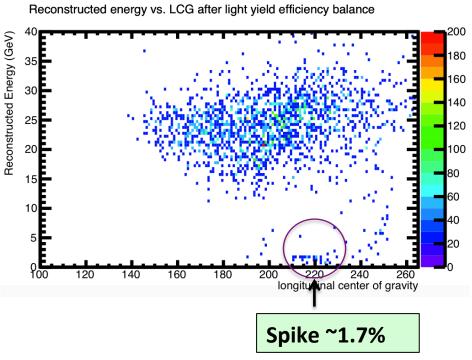

- Outer HCAL have less energy response after light correction.
- Decrease trend removed for SF vs. longitudinal center of gravity (LCG) for HCAL inner and HCAL outer after light efficiency correction.

SF for HCAL INNER

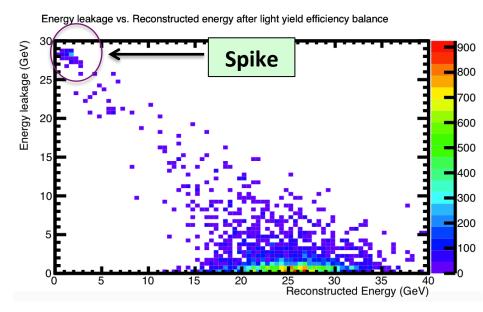

After Light Eff Correction

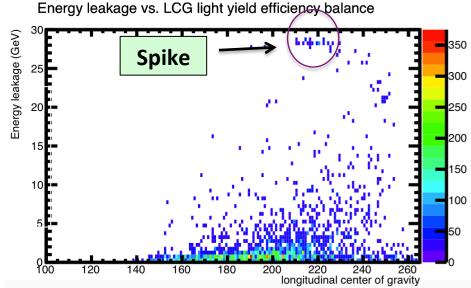

SF for HCAL OUTER

energy response after light yield efficiency balance


Liang Xue

Reconstructed energy before/after light correction




- Before light correction, reconstructed energy is over estimated due to that SF(mu)<SF(hadron).
- By applying light correction (smoothing energy response ie. SF vs LCG), reconstructed energy is then measured to be ~25 GeV due to light efficiency loss.
- The spike at 0 (channeling / punch through) is ~1.7% with E < 3 GeV, after light correction.

Spike of the energy spectra

 Spike at 0 due to channeling / punch through is ~1.7% with E<3GeV.

Summary

- Light collection efficiency correction is studied with 30 GeV pion for SPACAL and HCAL sPHENIX reference design.
- Light correction with Eff(R_{out})=1.0, and Eff(R_{in})=0.15 for outer HCAL, and Eff(R_{out})=1.0, and Eff(R_{in})=0.8 for inner HCAL can used remove the SF dependence on LCG.
- Particle channeling/punch through is ~1.7% comparing ~2.7% for HCAL standalone.